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Heat kernel of integrable billiards in a magnetic field

R Narevich, D Spehner† and E Akkermans
Department of Physics, Technion, 32000 Haifa, Israel

Received 26 August 1997, in final form 29 January 1998

Abstract. We present analytical methods to calculate the magnetic response of non-interacting
electrons constrained to a domain with boundaries and submitted to a uniform magnetic field.
Two different methods of calculation are considered—one involving the large energy asymptotic
expansion of the resolvent (Stewartson–Waechter) applies to separable systems, the other based
on the small time asymptotic behaviour of the heat kernel (Balian–Bloch). Both methods are in
agreement with each other but differ from results previously obtained by Robnik. Finally, the
Balian–Bloch multiple scattering expansion is studied and the extension of our results to other
geometries is discussed.

1. Introduction

The aim of this work is to present analytical methods for the calculation of the magnetic
response of non-interacting electrons constrained to a domain with boundaries and submitted
to a uniform magnetic field.

Historically, this problem traces back to the Bohr–van Leeuwen theorem stating the
absence of classical orbital magnetism due to the exact cancellation between the bulk and
edge magnetizations [1]. Later on, Landau using a quantum approach did show the existence
of a finite magnetization [2]. An extension to finite systems was provided by Teller [3] who
showed that the Landau magnetization results from an almost cancellation between the bulk
and edge contributions. In this work, we shall concentrate on the problem of non-interacting
electrons using the semi-infinite plane as a paradigm (our methods can be readily extended
to other integrable systems, for instance a disc).

Whereas it is important to know the spectrum with a sufficient precision in order to
describe low-temperature and high magnetic field phenomena (such as the integer quantum
Hall effect), the high-temperature or weak magnetic field response, such as for instance the
orbital diamagnetism, may be obtained using smoothed spectral quantities. We shall describe
them here by defining and calculating the heat kernel or equivalently its Laplace transform.
The small time asymptotic expansion of the heat kernel is simply related to the smooth part
of the density of states (the Weyl expansion) [4] and to smoothed thermodynamical quantities
like the magnetization [5]. This asymptotic expansion of the heat kernel for the semi-infinite
plane gives the perimeter correction to the Landau diamagnetism as noted by Robnik [6].
The heat kernel in a uniform magnetic field and a smooth potential was calculated by Prado
et al [7]. We shall expand the heat kernel in two different ways obtaining the same results
which differ, however, from those obtained by Robnik. We subsequently compare our results
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with those obtained by using the Balian–Bloch [8] expansion. We show (in agreement with
more recent works [9]) that the Balian–Bloch method is not very convenient in the presence
of a magnetic field due to the fact that several terms in the multiple scattering expansion have
to be included in order to obtain just one term in the asymptotic series of the heat kernel.
Another asymptotic method we use, following Stewartson and Waechter [10], is powerful
enough to give, in principle, all the terms in the asymptotic series for the semi-infinite
plane in a magnetic field. However, this latter scheme is applicable only for separable
systems while the Balian–Bloch expansion is general. Inspite of the restricted generality
of the Stewartson and Waechter’s method, we argue that the results have wider validity, in
particular that all the coefficients in the asymptotic series are universal in a sense that we
shall clarify.

2. Generalities on the resolvent and the heat kernel

The resolventG(E) of a bounded system is by definition the Laplace transform of the heat
kernelP(t) = Tr e−(1/h̄)Ĥ t =∑n e−(1/h̄)Ent , i.e. formally

G(E) = Tr
1

E + Ĥ =
∑
n

1

E + En (1)

where the sum runs over all eigenstatesn of the HamiltonianĤ of the system. This
function was extensively studied for the problem of the Laplacian on manifolds with
boundaries [11, 12]. As is well known, the smallt behaviour of the heat kernel of a
particle of massm moving in a two-dimensional billiard is given by Weyl’s formula,
P(t) = (mS/2πh̄t) + O(t−

1
2 ), whereS is the area of the system; therefore, its Laplace

transform is not well defined. A possible way to regularize the Laplace transform is to
subtract this leading smallt behaviour toP(t) and then take the Laplace transform:

g(E) = 1

h̄

∫ ∞
0

dt

(
P(t)− mS

2πh̄t

)
e−(1/h̄)Et Re(E) > 0. (2)

An expression forg(E) valid also for Re(E) 6 0 was given by Berry and Howls [4]:

g(s =
√
E) = lim

N→∞

[∑
n6N

1

s2+ En −
mS

2πh̄2 ln

{
EN

s2

}]
. (3)

It is easy to show thatg(s) is related to the density and to the integrated density of states
by

d(E) =
∑
n

δ(E − En) = mS

2πh̄2 −
1

π
lim
ε→0+

Im g(i
√
E − iε) (4)

N(E) =
∫ E

0
d(ε) dε = mSE

2πh̄2 −
∮
C(E)

dε

2iπ
g(s = i

√
ε) (5)

where the contourC(E) in the complex plane encloses the segment [0, E] of the real axis
(such that it contains a finite number of poles ofg(i

√
ε)). Both (4) and the fact thatP(t)

is the Laplace transform ofd(E), imply that the two definitions (2) and (3) coincide for
Re(E) > 0.

Asymptotic expansions ofP(t) for small t and of g(s) and d(E) for large s andE,
respectively, are related. For example, assuming that we know the Weyl expansion of the
resolvent

g(s) ∼
∞∑
r=1

cr

sr
s →∞, |Arg(s)| 6 π

2
−1,1 > 0 (6)
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we obtain

d(E) ∼ mS

2πh̄2 +
1

π
√
E

∞∑
r=0

(−1)r

Er
c2r+1 E→∞ (7)

P(t) ∼ mS

2πh̄t
+
∞∑
r=1

cr

0(r/2)

(
t

h̄

)(r/2)−1

t → 0. (8)

The equivalence between (6)–(8) is a consequence of equation (4), the generalized Watson’s
lemma, and of its reciprocal [13].

As a simple example, the heat kernel and the resolvent associated to the Landau spectrum
of a particle moving on a two-dimensional plane in a perpendicular magnetic fieldB are
easily found to be

P∞(t) = N8

2 sinh(ωt/2)
(9)

and

g∞(s) = N8

h̄ω

(
ln

(
−ν − 1

2

)
− ψ(−ν)

)
(10)

where the degeneracy of the levels isN8 = SB/80 (80 = hc/e is the flux quantum),
ω = eB/mc is the cyclotron frequency,ν = −(s2/h̄ω)− 1

2 andψ(z) = 0′(z)/0(z) is the
digamma function. Their asymptotic expansions are

P∞(t) ∼ N8

ωt

(
1− (ωt)

2

24
+ 7(ωt)4

5760
+ · · ·

)
g∞(s) ∼ N8

h̄ω

(
− 1

24

(
h̄ω

s2

)2

+ 7

960

(
h̄ω

s2

)4

+ · · ·
)

d∞(E) ∼ N8

h̄ω
(no more terms). (11)

The last result is obvious because by smoothing out the regular step-like integrated density
of states over the energies we obtain a linear function with no higher power-law corrections.
Since for any two-dimensional system of surface areaS in a uniform magnetic field,P(t)
has the same leading (smallt) behaviour asP∞(t), we may regularize the resolvent by
subtractingP∞(t) from P(t) and then take the Laplace transform. Such a regularization
givesg(s)− g∞(s), and can be calculated in the following way.

We define the Wick-rotated retarded Green functionsG+(t; r, r′) andG+∞(t; r, r′) by
G+(t; r, r′) = G+∞(t; r, r′) = 0 if t < 0, and(

Ĥ + h̄ ∂
∂t

)
G+(t; r, r′) = h̄δ(t)δ(r − r′) (12)

with the additional Dirichlet condition forG+(t; r, r′) on the boundary∂S of the system:

G+(t; r, r′) = 0 for r ∈ ∂S. (13)

The Laplace transformsG(E; r, r′) andG∞(E; r, r′), are defined using the same boundary
condition (13) and the equation

(Ĥ + E)G(E; r, r′) = δ(r − r′). (14)

Then, using (2) and the definition of the heat kernel, we have

g(s)− g∞(s) =
∫
S

d2r (G(s2; r, r)−G∞(s2; r, r)). (15)
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3. The resolvent for the semi-infinite plane

We aim now to apply (15) in order to extend the method developed by Stewartson and
Waechter [10] to the magnetic case. We consider the following set-up. A spinless particle
of charge−e (e > 0) and massm moves in the semi-infinite plane. A uniform magnetic
field B is applied perpendicular to its surface. Cartesian coordinates are defined such
that thex-axis is perpendicular to the boundary and the motion is confined to positive
values ofx, whereas they-axis is along the boundary. The Dirichlet boundary condition
is imposed atx = 0. In order to work with a finite system, we introduce another Dirichlet
boundary condition atx = L⊥, whereL⊥ is taken so large with respect to the magnetic
length lB =

√
h̄c/eB that the corresponding eigenstates do not feel the presence of both

boundaries. In this case it is clear that the contributions of the two boundaries tog(s) will
be identical (we will check this explicitly later). For the same reason, i.e. working with a
finite system, we impose a periodic boundary condition in they direction, takingL to be
the length of the boundary.

In the Landau gaugeA = (0, Bx), the Hamiltonian of the particle is

Ĥ = 1

2m

(
p̂2
x +

(
p̂y + e

c
Bx
)2
)
. (16)

The Green functionsG(E; r, r′) andG∞(E; r, r′) are periodic iny−y ′ and we can expand
them in Fourier series, for example

G(E; r, r′) =
∑
py

eipy(y−y ′)/h̄Gpy (E; x, x ′). (17)

The sum runs overpy = nyh/L, whereny ∈ Z. Introducing the dimensionless variables
x̃ = √2x/lB , x̃0 =

√
2py/mωlB , N ′8 = mωL2/2πh̄ andν = −(E/h̄ω)− 1

2, (14) transforms
into(

d2

dx̃2
− E

h̄ω
− 1

4
(x̃ + x̃0)

2

)
Gpy (E; x̃, x̃ ′) = −

2m

h̄2 (4πN
′
8)
−1/2δ(x̃ − x̃ ′). (18)

The solution of this equation together withGpy (E; 0, x ′) = Gpy (E;L⊥, x ′) = 0 can be
written as a sum of three terms:

Gpy (E; x, x ′) = −
2m

h̄2
√

4πN ′8
(G̃∞(ν, x̃0; x̃, x̃ ′)+ G̃1b(ν, x̃0; x̃, x̃ ′)

+ G̃2b(ν, x̃0; x̃, x̃ ′)). (19)

The Green function for unbounded motioñG∞(ν, x̃0; x̃, x̃ ′) is given by

G̃∞(ν, x̃0; x̃, x̃ ′) = −0(−ν)√
2π

Dν(x̃> − x̃0)Dν(x̃0− x̃<) (20)

where x̃> = max{x̃, x̃ ′}, x̃< = min{x̃, x̃ ′}, Dν(u) is the parabolic cylinder function (we
used the Wronskian [14]W(Dν(u),Dν(−u)) =

√
2π/0(−ν)). The last two terms in (19)

are respectively the contributions of the boundariesx = 0 and x = L⊥ to the Green
function. They are obtained by demanding thatGpy (E; x, x ′) vanishes on the boundaries.
However, each boundary is considered separately, i.e. making the Green function vanish
on the boundaryx = 0 we do not impose any condition on the other boundary. Moreover,
Gpy (E; x, x ′) is exponentially small there due to the asymptotic behaviour of the function

Dν for large and positive argument (recall thatL̃⊥ =
√

2L⊥/lB � 1):

G̃1b(ν, x̃0; x̃, x̃) ∼ 0(−ν)√
2π

Dν(x̃0)

Dν(−x̃0)
D2
ν (x̃ − x̃0)
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G̃2b(ν, x̃0; x̃, x̃) ∼ 0(−ν)√
2π

Dν(L̃⊥ − x̃0)

Dν(x̃0− L̃⊥)
D2
ν (x̃0− x̃). (21)

Since we are interested in the limitL→∞, we can now replace the sum overpy in (17) by
an integral. We deduce thatG̃1b(ν, x̃0; x̃, x̃) andG̃2b(ν, x̃0; x̃, x̃) give the same contribution
to (15), which can be expressed using known [14] integrals of the functionDν as

g(s)− g∞(s) =
0(−ν)√N ′8
h̄ω
√

8π2

∫ ∞
−∞

dx̃0
Dν(x̃0)

Dν(−x̃0)

×
(
Dν(−x̃0)

∂D′ν
∂ν

(−x̃0)−D′ν(−x̃0)
∂Dν

∂ν
(−x̃0)

)
=

√
N ′8√

4πh̄ω
lim
X̃0→∞

(
∂

∂ν

∫ X̃0

−X̃0

dx̃0 lnDν(−x̃0)− X̃0ψ(−ν)
)
. (22)

This is the resolvent for the semi-infinite plane. In the infinitely large strip geometry, the
correspondingg(s)− g∞(s) is twice this result.

Formula (22) might be understood more intuitively as follows. The integrated density
of statesN(E) counts the number of zeros of the wavefunction at the originD(ε/h̄ω)− 1

2
(x̃0),

for all x̃0 and all energiesε up to ε = E:

N(E) =
∑
py

∮
C(E)

dε

2π i

∂

∂ε
lnD(ε/h̄ω)− 1

2
(x̃0). (23)

The sum and the integral cannot be inverted since there are infinitely many states. However,
we can formally subtract fromN(E) the integrated density of states of the infinite plane
which we write

N∞(E) = 1

2

∑
py

∑
nx

θ

(
E − h̄ω

(
nx + 1

2

))
= − 1

2h̄ω

∑
py

∮
C(E)

dε

2π i
ψ

(
− ε

h̄ω
+ 1

2

)
(24)

(a factor 1
2 is introduced since we neglected the second boundary contribution in (23)).

Using (5) we obtain

g(s)− g∞(s) = 1

h̄ω

∑
py

(
∂

∂ν
lnDν(x̃0)− 1

2
ψ(−ν)

)
. (25)

Replacing here the sum overpy by an integral we obtain (22). The heat kernel is found by
performing an inverse Laplace transform on (22) or (25).

It is worth noticing thatg(
√
E) andP(t) have the following forms:

h̄ωg(
√
E) = N8g̃∞

(
E

h̄ω

)
+
√
N ′8g̃S

(
E

h̄ω

)
P(t) = N8P̃∞(ωt)+

√
N ′8P̃S(ωt) (26)

whereN8 = mωLL⊥/2πh̄, N ′8 = mωL2/2πh̄ and none of the functions denoted by tilde
depend explicitly onB, L or L⊥. The boundary term is proportional to

√
N ′8 and is

smaller than the bulk term by a factor of order 1/
√
N8 for L⊥ ∼ L. For finite lengths

L of the boundary, there are exponentially small correction terms in (22) and (26) due to
the error introduced by replacing the sum in (17) by an integral. Neglecting these small
corrections, the asymptotic expansion of the heat kernel and of the density of states in terms
of heff = 1/N ′8, as a small parameter (assuming large fields or large systems), has two terms
only. This is due to the straight boundary and there will be more terms if the boundary has
a non-zero curvature.
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We also check our result in the opposite limitB → 0. SinceP̃∞(τ ) ∼ τ−1 as τ → 0
(see (10)) and, as we shall see in the next section,P̃s(τ ) ∼ − 1

4τ
−1/2, we have

P(B = 0, t) ' mLL⊥
2πh̄t

− L
4

√
m

2πh̄t
.

This equation is true up to exponentially small terms for largeL andL⊥ (or equivalently for
small t); it agrees with the well known observation that, when the curvature of the boundary
is zero everywhere, the coefficientscr in the Weyl expansion (8) vanish forr > 2.

The results of this section may be extended to any separable system provided it reduces
to a one-dimensional Sturm–Liouville problem. As an example, we derive in the appendix
the resolvents of a particle moving in a disc with and without a magnetic field.

4. Weyl expansions of the resolvent and the heat kernel

In this section we shall derive asymptotic expressions for the heat kernel and the resolvent
using equation (25). For large positive energies (large negativeν) and largex̃0 the Darwin
asymptotic expansion (basically WKB expansion of the wavefunction) of the parabolic
cylinder function [15, 16] is

lnDν(x̃0) ∼ ln 2π

4
− 1

2
ln0(−ν)− θ(x̃0, a)− 1

4
ln(x̃2

0 + 4a)+
∞∑
s=1

(−1)sd3s

(

√
x̃2

0 + 4a)3s
(27)

whereθ(x̃0, a) is an odd function of̃x0, a = E/h̄ω > 0 andx̃2
0 + 4a � 1. The coefficients

d3s are odd functions of̃x0 for odd values ofs and even functions of̃x0 for evens. Since
we integratex̃0 in (25) over a symmetric interval, only even functions ofx̃0 do contribute.
The first three even-indexed coefficientsd3s are given respectively by [15]

d6 = 3

4
x̃2

0 − 2a d12 = 153

8
x̃4

0 − 186ax̃2
0 + 80a2

and

d18 = 6381

4
x̃6

0 − 29862ax̃4
0 + 62292a2x̃2

0 −
31232

3
a3.

Using (25) and (11) we obtain the asymptotic expansion of the resolvent

g(s =
√
h̄ωa) ∼ N8

h̄ω

(
− 1

24a2
+ 7

960a4
+ · · ·

)
−
√
πN ′8
4h̄ω

(
1√
a
− 9

256a5/2
+ 2625

262144a9/2
− 241197

225a13/2
+ · · ·

)
. (28)

Similarly, the Weyl expansion of the heat kernel is derived using (8)

P
(
t = τ

ω

)
= N8

τ

(
1− τ

2

24
+ 7τ 4

5760
− · · ·

)
−
√
N ′8

4
√
τ

(
1− 3τ 2

64
+ 25τ 4

16384
− 7309τ 6

315× 220
+ · · ·

)
. (29)

These expansions could, in principle, be continued indefinitely, by calculating recursively
the coefficientsd6s .

It is instructive to compare the expression (29) with its counterpart atB = 0. The
heat kernel in the absence of magnetic field is simply obtained from (29) by taking the
argument of the analytic function ofτ in each set of parentheses to be zero. Two terms are
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obtained, the area and the perimeter. Since these terms are known to be general for the case
of billiards irrespective of their integrability, we suggest that our result will apply to any
billiard in a uniform magnetic field (although it was derived for an integrable system). It is
worth emphasizing that the two terms in (29) are only part of the asymptotic expansion for
a general magnetic billiard. There should be additional terms proportional to the integrals
over the curvature and its derivatives [4, 10]. We conjecture that the generalization of the
heat kernel expansion obtained for a two-dimensional billiard without magnetic field to the
case of magnetic billiard consists of multiplying each term of that expansion by an analytic
function of τ . These functions should be universal for all flat two-dimensional billiards
with smooth boundaries. Similar conclusions have been obtained for the related case of a
Aharonov–Bohm billiard [17].

Note that in the case of a particle in the infinite plane in a perpendicular field confined
by a harmonic potential, Pradoet al [7] found the coefficientc2 in (8) to beα + βB2,
whereα andβ are constants depending on the potential which corresponds to the geometric
features of the boundary in our problem.

5. The Balian–Bloch method

The small time asymptotic expansion of the heat kernel can also be obtained using a method
suggested by Balian and Bloch [8]. It consists of a reformulation of the problem of solving
a partial differential equation of elliptic type with Dirichlet (or another) boundary condition
in terms of an integral equation of Fredholm type. This integral equation is then solved
iteratively (Neumann series), and each term in this multiple reflection expansion corresponds
to one term in the asymptotic series of the heat kernel, as shown by Balian and Bloch [8].

The Green function for the Dirichlet problem in a domainS with a boundary∂S in
absence of magnetic field is written as a sum of two terms:

G(E; r, r′) = G∞(E; r, r′)+GS(E; r, r′) (30)

where each term on the right-hand side satisfies (14) in whichĤ = −(h̄2/2m)1 is a
Laplacian. The first term is the infinite plane Green function while the second is specified
by the boundary conditionGS(E; r, r′) = −G∞(E; r, r′) for r on ∂S. This boundary term
is expressed in terms of an unknown densityµE(α, r) as

GS(E; r, r′) =
∫
∂S

dσα
∂G∞(E; r,α)

∂nα
µE(α, r

′) (31)

andµE(α, r) is determined by solving the following Fredholm integral equation:

m

h̄2µE(α, r
′) = −G∞(E;α, r′)−

∫
∂S

dσβ
∂G∞(E;α,β)

∂nβ
µE(β, r

′) (32)

whereα,β, . . . are arbitrary points on the boundary∂S, dσβ is the boundary differential
element, and∂/∂nβ is the normal derivative at the pointβ with the normal oriented towards
the interior of the domain. Solving iteratively the integral equation (32) for the density
µE(α, r, the following multiple reflection expansion is obtained for the Green function:

G(E; r, r′) = G∞(E; r, r′)− h̄
2

m

∫
∂S

dσα
∂G∞(E; r,α)

∂nα
G∞(E;α, r′)

+
(
h̄2

m

)2 ∫
∂S

dσα dσβ
∂G∞(E; r,α)

∂nα

∂G∞(E;α,β)
∂nβ

G∞(E;β, r′)− · · · .
(33)
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Using the time-dependent Green functionG+(t; r, r′) introduced in section 4, we calculate
the heat kernelP(t) = ∫

S
d2rG+(t; r, r). The multiple expansion ofG+(t; r, r′) is

G+(t; r, r′) = G+∞(t; r, r′)−
h̄

m

∫
∂S

dσα

∫ t

0
dτ
∂G+∞(t − τ ; r,α)

∂nα
G+∞(τ ;α, r′)

+
(
h̄

m

)2 ∫
∂S

dσα dσβ

∫ t

0
dτ1

∫ τ1

0
dτ2

∂G+∞(t − τ1; r,α)
∂nα

×∂G
+
∞(τ1− τ2;α,β)

∂nβ
G+∞(τ2;β, r′)− · · · . (34)

This approach was applied in this form to the case of a uniform magnetic field
perpendicular to the domainS [6]. However, care must be taken since at each order of the
multiple reflection expansion we obtain a term which is not gauge invariant. This problem
may be easily corrected by introducing the covariant derivative∂/∂nα − (ie/h̄c)An(α)
instead of the usual∂/∂nα. This substitution is of no importance when the gauge is chosen
such that the vector potential has no component normal to the boundary (as it happens to
be in our problem), but, generally, it should be taken into account.

Let us, therefore, apply the Balian and Bloch method to the semi-infinite plane in a
uniform magnetic field. The Green function for the infinite plane is given by

G+∞(t; r, r′) =
mω

4πh̄ sinh(ωt/2)
exp

[
−mω

4h̄
(r − r′)2 coth

ωt

2
− imω

2h̄
(y − y ′)(x + x ′)

]
.

(35)

We calculate now the first term (proportional toB2) in the small magnetic field expansion
of the heat kernel. It turns out that the first three boundary-dependent terms in the multiple
reflection expansion do contribute to this order. The smallB expansion of the one-reflection
term begins with

−L
8

√
2m

πh̄t
+ L

8

√
2m

πh̄t

7

192
ω2t2

for the two-reflection and three-reflection terms, it is respectively:

L

8

√
2m

πh̄t

3

192
ω2t2

and

−L
8

√
2m

πh̄t

1

192
ω2t2.

Therefore, the small magnetic field expansion of the heat kernel begins as follows:

P(t) = P∞(t)− L
8

√
2m

πh̄t
+ L

8

√
2m

πh̄t

3

64
ω2t2− · · · (36)

in accordance with the result (29) obtained previously. This, however, disagrees with
Robnik’s calculation [6]. In his work this author assumed that, in the case of a
zero-curvature boundary, the one-reflection term contains all the corrections due to the
boundary (as for the problem without magnetic field). However, as already noted by
John and Suttorp [9], higher-order terms cannot be neglected in calculating physical
quantities in the geometry with straight boundaries in the presence of a magnetic
field. We also emphasize that in order to calculate the term proportional toω2n in
the asymptotic expansion of the heat kernel, all the multiple reflection terms up to
(2n + 1)th order have to be taken into account. This result is intuitively appealing.
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Indeed as the magnetic field increases, the trajectories of the particles bend more
and more, so that higher and higher terms in the multiple reflection expansion do
contribute.

6. Perimeter corrections to the Landau diamagnetism

In this section we apply the previous results in order to compute the magnetic susceptibility
of a gas of independent electrons in a strip of very large widthL⊥.

Let us first consider the case of a non-degenerate gas at temperatureT = 1/kBβ. The
heat kernelP(t) when considered a function of an inverse temperaturet = τ/ω = h̄β

coincides with the one-electron (canonical) partition function (which we denote byZ(β) in
the following). If N is the electronic density (per unit area) andµB = eh̄/2mc the Bohr
magneton, the magnetic susceptibility of the ideal gas is given by

χ = lim
τ→0

4Nµ2
Bβ

∂2

∂τ 2
lnZ. (37)

Using the expansion (29) ofP(t) we obtain the weak field susceptibility,

χ = −1

3
Nβµ2

B

(
1− λT

16L⊥

(
1− λT

2L⊥

)−1)
(38)

where λT =
√
πβh̄2/2m is the de Broglie thermal length. As in [6] the correction to

the Landau diamagnetic susceptibilityχ∞ = − 1
3Nβµ

2
B is paramagnetic, but is smaller by

one order of magnitude. Our result agrees with numerical calculations performed by van
Ruitenbeck and van Leeuwen [18].

For a degenerate electron gas of Fermi energyEF, the relation between the susceptibility
and the canonical partition function is different [5]. In the grand-canonical ensemble,χ is
given by

χ = − lim
B→0

1

S

∂2�(EF)

∂B2
(39)

with �(EF) being the thermodynamic potential. The thermodynamic potential at zero
temperature�0(EF) is related to the partition function (heat kernel) through [5]

�0(EF) = −
∫ i∞+0+

−i∞+0+

dβ

2π i
eβEFβ−2Z(β). (40)

Using (26) we obtain

�0(EF) = −mS
2π

∫ i∞+0+

−i∞+0+

dτ

2π i
eτEF/h̄ω

(
ω2τ−2P̃∞(τ )+

√
2πh̄

mL2
⊥
ω3/2τ−2P̃S(τ )

)
. (41)

Replacing in this equation the Weyl expansions (29) ofP̃∞(τ ) and P̃S(τ ) amounts to
neglecting all oscillating contributions due to periodic orbits in�0(EF). However, even
though those oscillating terms in the thermodynamic potential may give at very low
temperature the largest corrections to the Landau diamagnetism, they are exponentially
damped by temperature [19, 20] (more precisely, the contribution of each periodic orbit is
damped by the factor(2πrmL⊥/h̄2βkF) sinh−1(2πrmL⊥/h̄2βkF), wherer is the number of
repetitions of the orbit andkF =

√
2mEF/h̄ is the Fermi wavevector). For temperatures

h̄2kF/mL⊥ � kBT � EF, we can neglect these oscillating contributions and we have at
small field

χ ' χ̄ = − e2

24πmc2

(
1− 9

16

1

L⊥kF

)
. (42)
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Here again the correction is paramagnetic and coincides with perturbative calculations [20].
The expressions (38) and (42) give the magnetic susceptibilities of a semi-infinite plane

regularized to have a finite widthL⊥ for small fieldsB such thatL⊥ � lB . The second
term in these equations has to be multiplied by two for the case of a finite (but very large)
strip instead of the semi-infinite plane.

The susceptibilities (38) and (42) give the perimeter corrections to the Landau
diamagnetism for a general billiard of surfaceS and smooth boundary of lengthL, with
L⊥ = S/L (although the method of Stewartson and Waechter works only for integrable
systems, the fact that it coincides with the more general Balian–Bloch expansion suggests
that our results are general). However, for a generic billiard this correction is not the only
one (although it is the leading one), and presumably other terms due to the curvature of the
boundary will appear.

7. Conclusion

We have derived exact relations for the resolvent and the heat kernel using the special case
of the semi-infinite plane in a uniform magnetic field. These relations are convenient starting
points for an asymptotic expansion, using the WKB approximation for the wavefunctions.
The validity of the method presented extends beyond the special case of this special geometry
and it works for any separable system. Our main result is the closed expression for the
boundary term of the heat kernel whose asymptotic expansion can be calculated recursively
as an infinite series. The first terms of this series were also obtained using the Balian–
Bloch multiple scattering expansion, which in practice appears to be less convenient than
the method of Stewartson and Waechter in the presence of a magnetic field. Then, the
perimeter corrections to the Landau diamagnetism are obtained both in the high-temperature
limit and for a degenerate gas.

Various properties of the heat kernels of Laplacians on manifolds have been extensively
investigated starting (among others) from the work of Kac [11] in order to relate the spectral
and geometrical descriptions [12]. Our results could be viewed as an extension of these
works towards the case of magnetic billiards. For a straight boundary, the effect of the
magnetic field is to add an infinite series to the bare perimeter term and this is, in some sense,
equivalent to an effective curvature of the boundary. We conjecture that the perimeter term
of a general magnetic billiard will be equal to that of a straight boundary. More generally,
the boundary has a curvature and therefore another length scale enters the problem and is
coupled to the cyclotron radius. This leads to additional terms in the asymptotic expansion
of the heat kernel. Whether those terms appear as a scaling function of both the cyclotron
radius and the curvature is an important issue which deserves further study.
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Appendix

Consider a particle confined to a disc of radiusR. The energies (imposing Dirichlet boundary
conditions) are the solutions of the equationJl(kR) = 0, wherel is the angular momentum
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quantum number andk2 = 2mE/h̄2 is the momentum. The numberN(E) of zeros is equal
to the integral of the logarithmic derivative of the Bessel function:

N(E) =
∑
l

∮
C(E)

dε

2π i

(dJl(kR)/dε)

Jl(kR)
. (A.1)

Then according to the method that we developed for the semi-infinite plane geometry, we
obtain for the resolvent

G(E) =
∑
l

m

h̄2k

(dIl(kR)/dk)

Il(kR)
(A.2)

which coincides with the result of Stewartson and Waechter [10] when subtracting the
resolvent corresponding to the infinite plane.

For the corresponding problem in the presence of a magnetic field, the energies are
solutions of 1F1((l + |l| + 1)/2 − (E/h̄ω); 1 + |l|;N8) = 0, whereN8 = SB/80 and
1F1(a; c; u) is the confluent hypergeometric function [16]. The counting function is now

N(E) =
∑
l

∮
C(E)

dε

2π i

(d1F1((l + |l| + 1)/2− (ε/h̄ω); 1+ |l|;N8)/dε)
1F1((l + |l| + 1)/2− (ε/h̄ω); 1+ |l|;N8) (A.3)

and the resolvent

G(E) =
∑
l

(d1F1((l + |l| + 1)/2+ (E/h̄ω); 1+ |l|;N8)/dE)
1F1((l + |l| + 1)/2+ (E/h̄ω); 1+ |l|;N8) . (A.4)

We emphasize again that in order to work with well defined quantities we must subtract
from this expression the part of the resolvent corresponding to the infinite plane.
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